Affiliation:
1. CNR-INM, National Research Council-Institute of Marine Engineering, 00128 Rome, Italy
2. CEIMM, Italian Navy Hydrodynamic Research Center, 00128 Rome, Italy
Abstract
The paper presents the use of a supervised active learning approach for the solution of a simulation-driven design optimization (SDDO) problem, pertaining to the resistance reduction of a destroyer-type vessel in calm water. The optimization is formulated as a single-objective, single-point problem with both geometrical and operational constraints. The latter also considers seakeeping performance at multiple conditions. A surrogate model is used, based on stochastic radial basis functions with lower confidence bounding, as a supervised active learning approach. Furthermore, a multi-fidelity formulation, leveraging on unsteady Reynolds-averaged Navier–Stokes equations and potential flow solvers, is used in order to reduce the computational cost of the SDDO procedure. Exploring a five-dimensional design space based on free-form deformation under limited computational resources, the optimal configuration achieves a resistance reduction of about 3% at the escape speed and about 6.4% on average over the operational speed range.
Funder
Italian Navy
Italian Ministry of University and Research
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献