Shape optimization and hydrodynamic simulation of a Magnus anti-rolling device based on fully parametric modeling

Author:

Abstract

Ship anti-rolling devices are an essential component of modern vessels. The core component of the Magnus effect-based ship anti-rolling device is a rotating cylinder, hereinafter referred to as the Magnus cylinders. In this paper, fully parametric three-dimensional modeling of Magnus cylinders was performed, and the design space dimension was reduced using the Sobol design optimization method while still providing accurate and reliable results. The Sobol method generates quasi-random sequences that are more uniformly spaced in the search space and can more efficiently cover the entire solution space. The shape optimization study of the Magnus cylinder was carried out in conjunction with the computational fluid dynamics method to find the geometry of the Magnus cylinder with excellent hydrodynamic performance. Critical design parameters include the diameters of the cylinder ends and the length of the cylinder. The hydrodynamic and flow field characteristics of Magnus cylinders before and after the optimization were compared. The results show that there can be multiple local optimal values for lift and drag of Magnus cylinders within the design space to increase the lift and decrease the drag. The Magnus effect primarily influences the position of the vortex-shedding separation point at the surface of Magnus cylinders and deflects the wake to one side. For the optimized Magnus cylinder, the distribution of pressure and velocity in the flow field is significantly different. This research forms the basis for improving the practical application of Magnus anti-rolling devices.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3