Evolution Characteristics of Suction-Side-Perpendicular Cavitating Vortex in Axial Flow Pump under Low Flow Condition

Author:

Wang Lin,Tang Fangping,Chen Ye,Liu Haiyu

Abstract

In order to study the evolution characteristics of suction-side-perpendicular cavitating vortex in an axial-flow pump under low flow conditions, model tests, high-speed imaging, and an SST-CC turbulence model were used to simulate the external characteristics and cavitation morphology of the pump. The evolution law of suction-side-perpendicular cavitating vortex (SSPCV) was revealed by turbulent kinetic energy, liutex vortex identification, and vorticity transport equation. The results show that the evolution of suction-side-perpendicular cavitating vortex at low cavitation number can be divided into three stages: generation, development, and breaking stage. In the generation stage, the turbulent kinetic energy, velocity gradient and vortex kinetic energy continue to increase, reaching the maximum at the early stage of development. Afterwards, due to the viscosity of the water, the vortex slowly dissipates and enters the stage of development. Finally, it is affected by the next blade and enters the breaking stage, which accelerates the dissipation of the vortex. The vortex stretching term and vortex expansion term are the main contributors to the vorticity. During the development of the vortex, the vorticity is mainly caused by the deformation of the fluid micelle. The breaking stage mainly affects the stretching term, and the Coriolis force term cannot be ignored in the rotating coordinates.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3