An Experimental Study of Unsteady Partial Cavitation

Author:

Leroux Jean-Baptiste1,Astolfi Jacques Andre´1,Billard Jean Yves1

Affiliation:

1. Ecole Navale/IRENAV, Institute de Recherche de l’Ecole Navale, BP 600, 29240 Brest-Armee, France

Abstract

Unsteady partial cavitation can cause damage to hydraulic machinery and understanding it requires knowledge of the basic physics involved. This paper presents the main results of a research program based on wall-pressure measurements aimed at studying unsteadiness in partial cavitation. Several features have been pointed out. For cavity lengths that did not exceed half the foil chord the cavity was stated to be stable. At the cavity closure a peak of pressure fluctuations was recorded originating from local cavity unsteadiness in the closure region at a frequency depending on the cavity length. Conversely, cavities larger than half the foil chord were stated to be unstable. They were characterized by a cavity growth/destabilization cycle settled at a frequency lower than the previous ones. During cavity growth, the closure region fluctuated more and pressure fluctuations traveling in the cavity wake were detected. When the cavity was half the foil chord, cavity growth was slowed down and counterbalanced by large vapor cloud shedding. When the cavity length was maximum (l/c∼0.7–0.8), it was strongly destabilized. The reason for such destabilization is discussed at the end of the paper. It is widely believed that the cavity instability originates from a process involving the shedding of vapor clouds during cavity growth, a re-entrant jet, and a shock wave phenomenon due to the collapse of a large cloud cavitation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 203 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3