The characteristics of bubbly shock waves in a cavitating axisymmetric venturi via time-resolved X-ray densitometry

Author:

Gawandalkar Udhav U.ORCID,Poelma ChristianORCID

Abstract

The bubbly shock-driven partial cavitation in an axisymmetric venturi is studied with time-resolved two-dimensional X-ray densitometry. The bubbly shock waves are characterised using the vapour fraction and pressure changes across it, propagation velocity, and Mach number. The sharp changes in vapour fraction measured with X-ray densitometry, combined with high-frequency dynamic pressure measurements, reveal that the interaction of the pressure wave with the vapour cavity dictates the shedding dynamics. At the lowest cavitation number ( $\sigma \sim 0.47$ ), the condensation shock front is the predominant shedding mechanism. However, as $\sigma$ increases ( $\sigma \sim 0.78$ ), we observe an upstream travelling pressure discontinuity that changes into a condensation shock as it approaches the venturi throat. This coincides with the increasing strength of the bubbly shock wave as it propagates upstream, manifested by the increasing velocity of the shock front and the pressure rise across it. Consequently, the Mach number of the shock front increases and surpasses the critical value 1, favouring condensation shocks. Further, at higher $\sigma$ ( ${\sim }0.84\unicode{x2013}0.9$ ), both the re-entrant jet and pressure wave can cause cavity detachment. However, at such $\sigma$ , the pressure wave likely remains subsonic. Hence cavity condensation is not favoured readily. This leads to the re-entrant jet causing the cavity detachment at higher $\sigma$ . The shock front is accelerated as it propagates upstream through the variable cross-section of the venturi. This enhances its strength, favouring cavity condensation and eventual shedding. These observations explain the existence of shock fronts in an axisymmetric venturi for a large range of $\sigma$ .

Funder

European Research Council

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3