Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan

Author:

Ishfaque MuhammadORCID,Dai Qianwei,Haq Nuhman ulORCID,Jadoon Khanzaib,Shahzad Syed MuzyanORCID,Janjuhah Hammad TariqORCID

Abstract

Estimating the quantity of seepage through the foundation and body of a dam using proper health and safety monitoring is critical to the effective management of disaster risk in a reservoir downstream of the dam. In this study, a deep learning model was constructed to predict the extent of seepage through Pakistan’s Tarbela dam, the world’s second largest clay and rock dam. The dataset included hydro-climatological, geophysical, and engineering characteristics for peak-to-peak water inflows into the dam from 2014 to 2020. In addition, the data are time series, recurring neural networks (RNN), and long short-term memory (LSTM) as time series algorithms. The RNN–LSTM model has an average mean square error of 0.12, and a model performance of 0.9451, with minimal losses and high accuracy, resulting in the best-predicted dam seepage result. Damage was projected using a deep learning system that addressed the limitations of the model, the difficulties of calculating human activity schedules, and the need for a different set of input data to make good predictions.

Funder

National Key Research and Development program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3