Abstract
Estimating the quantity of seepage through the foundation and body of a dam using proper health and safety monitoring is critical to the effective management of disaster risk in a reservoir downstream of the dam. In this study, a deep learning model was constructed to predict the extent of seepage through Pakistan’s Tarbela dam, the world’s second largest clay and rock dam. The dataset included hydro-climatological, geophysical, and engineering characteristics for peak-to-peak water inflows into the dam from 2014 to 2020. In addition, the data are time series, recurring neural networks (RNN), and long short-term memory (LSTM) as time series algorithms. The RNN–LSTM model has an average mean square error of 0.12, and a model performance of 0.9451, with minimal losses and high accuracy, resulting in the best-predicted dam seepage result. Damage was projected using a deep learning system that addressed the limitations of the model, the difficulties of calculating human activity schedules, and the need for a different set of input data to make good predictions.
Funder
National Key Research and Development program of China
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献