Wavelet–ANN hybrid model evaluation in seepage prediction in nonhomogeneous earthen dams

Author:

Fatehi-Nobarian Bahador1ORCID,Fard Moradinia Sina2

Affiliation:

1. a Department of Civil Engineering of Hydraulic Structures, Aras Branch, Islamic Azad University, Jolfa, Iran

2. b Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

ABSTRACT In this study, novel methods such as wavelet–artificial neural network hybrid models and artificial neural network models were used to predict seepage from the Zonouz earthen dam. The dataset consisted of 972 piezometric data points. Statistical fitting methods such as root mean squared error, determination coefficient, scatter plots, and data distribution diagrams were used to evaluate the results. The findings indicated that the wavelet–artificial neural network hybrid model was more accurate than the artificial neural network model. Specifically, during training, the wavelet–artificial neural network hybrid model had determination coefficients and root mean squared errors of 0.820, 0.680, 743.39, and 792.52, while the artificial neural network model had 0.700, 0.600, 426.39, and 131.45. Similarly, during validation, the wavelet–artificial neural network hybrid model had determination coefficients and root mean squared errors of 0.700, 0.600, 426.39, and 131.45, while the artificial neural network model had 0.823, 0.680, 743.39, and 792.52. Therefore, the wavelet–artificial neural network hybrid model can be proposed as a precise method for predicting seepage in earthen dams and is more accurate than the artificial neural network model. This study highlights the importance of preventing dam failures and using advanced modeling techniques for better predictions and preventive measures.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3