Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems

Author:

Rodríguez-Rángel HéctorORCID,Arias Dulce MaríaORCID,Morales-Rosales Luis AlbertoORCID,Gonzalez-Huitron VictorORCID,Valenzuela Partida MarioORCID,García JoanORCID

Abstract

One-stage production of carbohydrate-enriched microalgae biomass in wastewater is a promising option to obtain biofuels. Understanding the interaction of water quality parameters such as nutrients, carbon, internal carbohydrates, and microbial composition in the culture is crucial for efficient operation and viable large-scale cultivation. Bioprocess models are an essential tool for studying the simultaneous effect of complex factors on carbohydrate accumulation, optimizing the process, and reducing operational costs. In this sense, we use a dataset obtained from an empirical model that analyzed the accumulation of carbohydrates in a single process (simultaneous growth and accumulation) from real wastewater. In this experiment, there were no ideal conditions (limiting nutrient conditions), but rather these limitations are guaranteed by the operating conditions (hydraulic retention times/nutrient or carbon loads). Thus, the model integrates 18 variables that are affected and not only carbohydrates. The effect of these variables directly influences the accumulation of carbohydrates. Therefore, this paper analyzes artificial intelligence (AI) algorithms to develop a model to forecast biomass production in wastewater treatment systems. Carbohydrates were modeled using five artificial intelligence methods: (1) Artificial Neural Networks (ANNs), (2) Convolutional Neural Networks (CNN), (3) Long Short-Term Memory Network (LSTMs), (4) K-Nearest Neighbors (kNN), and (5) Random Forest (RF)). The AI methods allow learning how several components interact and if their combinations work faster than building the physical experiments over the same period of time. After comparing the five learning models, the CNN-1D model obtained the best results with an MSE (Mean Squared Error) = 0.0028. This result shows that the model adequately approximates the system’s dynamics.

Funder

National Autonomous University of Mexico

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3