Structure and Tensile Strength of Pure Cu after High Pressure Torsion Extrusion

Author:

Nugmanov ,Mazilkin ,Hahn ,Ivanisenko

Abstract

The microstructure and mechanical properties of rod-shaped samples (measuring 11.8 mm in diameter and 35 mm in length) of commercially pure (CP) copper were characterized after they were processed by high pressure torsion extrusion (HPTE). During HPTE, CP copper was subjected to extremely high strains, ranging from 5.2 at central area of the sample to 22.4 at its edge. This high but varying strain across the sample section resulted in HPTE copper displaying a gradient structure, consisting of fine grains in the central area and of ultrafine grains both in the middle-radius area and at the sample edge. A detailed analysis of the tensile characteristics showed that the strength of HPTE copper with its gradient structure is similar to that of copper after severe plastic deformation (SPD) techniques, typically displaying a homogeneous structure. Detailed analysis of the contributions of various strengthening mechanisms to the overall strength of HPTE coper revealed the following: The main contribution comes from Hall–Petch strengthening due to the presence of high and low angle grain boundaries in gradient structure, which act as effective obstacles to dislocation motion. Therefore, both types of boundaries should be taken into account in the Hall–Petch equation. This study on CP copper demonstrated the potential of using the HPTE method for producing high-strength metallic materials in bulk form for industrial use.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3