Processing of high-strength thermal-resistant Al-2.2% cerium-1.3% lanthanum alloy rods with high electric conductivity by High Pressure Torsion Extrusion

Author:

Xu Rui,Lu Yemao,Dai Yuting,Brognara Andrea,Hahn Horst,Ivanisenko YuliaORCID

Abstract

AbstractA novel severe plastic deformation (SPD) process of High Pressure Torsion Extrusion (HPTE) was applied to the rods of the Al-2.2 wt.% Ce-1.3 wt.% La (Al–3.5RE) alloy. The microstructure, microhardness, the mechanical strength, thermal stability, and electrical conductivity of the alloy after HPTE and subsequent annealing have been investigated. It was demonstrated that HPTE processing can simultaneously increase yield strength from 127 to 225 MPa and electrical conductivity from 54.7% IACS to 55.7% IACS in this alloy. Such a remarkable combination of properties was achieved thanks to significant refinement of microstructure constituents: grain size of Al matrix was reduced down to 0.9 µm and initially continuous network of Al11RE3 phase was broken to micrometer- and nanometer-sized particles. Furthermore, the yield strength of the HPTE-processed Al–3.5 RE alloy remains stable at 230 °C for 1 h due to micrometer- and nanometer-sized particles that pin the grain boundaries. Therefore, HPTE processing of Al–RE alloys has a high application potential in the electric power industry. Graphical abstract

Funder

China Scholarship Council

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3