Abstract
Copper-metallized gallium nitride (GaN) high-electron-mobility transistors (HEMTs) using a Ti/Pt/Ti diffusion barrier layer are fabricated and characterized for Ka-band applications. With a thick copper metallization layer of 6.8 μm adopted, the device exhibited a high output power density of 8.2 W/mm and a power-added efficiency (PAE) of 26% at 38 GHz. Such superior performance is mainly attributed to the substantial reduction of the source and drain resistance of the device. In addition to improvement in the Radio Frequency (RF) performance, the successful integration of the thick copper metallization in the device technology further reduces the manufacturing cost, making it extremely promising for future fifth-generation mobile communication system applications at millimeter-wave frequencies.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献