Abstract
Frequent flood hazards in the Raoyang River Basin in western Liaoning, China, have posed serious threats to people’s lives and property. In an effort to study the simulation efficiencies of hydrological models in this arid and semi-arid catchment, this study examined the performance of the Xin’anjiang model, the Liaoning unsaturated model, and the DHF model in the Dongbaichengzi station watershed in the upper reaches of the Raoyang River, China. Additionally, this paper proposed an improved DHF model, which considers the impoundment and regulation of small- and medium-sized reservoirs in the upper reaches of the basin. The flood simulation results demonstrated that the Xin’anjiang model was difficult to apply in this area because the average value of its Nash–Sutcliffe efficiency (NSE) was as low as 0.31. Meanwhile, the simulation efficiencies of the Liaoning unsaturated model and the DHF model were higher than that of the Xin’anjiang model, but the relative error of flood peak discharge and runoff depth for most floods were still high and could not meet the actual forecast requirements by the Reservoir Administration Bureau of Liaoning Province. Overall, the improved DHF model showed the best efficiency, and the mean value of the NSE reached 0.79. Therefore, the improved DHF model has good applicability in the Dongbaichengzi station watershed in the upper reaches of the Raoyang River, China.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献