Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin

Author:

Zeng WenyingORCID,Song SongbaiORCID,Kang Yan,Gao Xuan,Ma Rui

Abstract

This study explores the response characteristics of runoff to the variability of meteorological factors. A modified vector autoregressive (VAR) model is proposed by combining time-varying parameters (TVP) and stochastic volatility (SV). Markov chain Monte Carlo (MCMC) is used to estimate parameters. The TVP-SV-VAR model of daily runoff response to the variability of meteorological factors is established and applied to the daily runoff series from the Linjiacun hydrological station, Shaanxi Province, China. It is found that the posterior estimates of the stochastic volatility of the four variables fluctuate significantly with time, and the variance fluctuations of runoff and precipitation have strong synchronicity. The simultaneous impact of precipitation and evaporation on the pulse of runoff is close to 0. Runoff has a positive impulse response to precipitation, which decreases as the lag time increases, and a negative impulse response to temperature and evaporation with fluctuation. The response speed is precipitation > evaporation > temperature. The TVP-SV-VAR model avoids the hypothesis of homoscedasticity of variance and allows the variance to be randomly variable, which significantly improves the analysis performance. It provides theoretical support for the study of runoff response and water resource management under the conditions of climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3