Abstract
Reservoir water level (RWL) prediction has become a challenging task due to spatio-temporal changes in climatic conditions and complicated physical process. The Red Hills Reservoir (RHR) is an important source of drinking and irrigation water supply in Thiruvallur district, Tamil Nadu, India, also expected to be converted into the other productive services in the future. However, climate change in the region is expected to have consequences over the RHR’s future prospects. As a result, accurate and reliable prediction of the RWL is crucial to develop an appropriate water release mechanism of RHR to satisfy the population’s water demand. In the current study, time series modelling technique was adopted for the RWL prediction in RHR using Box–Jenkins autoregressive seasonal autoregressive integrated moving average (SARIMA) and artificial neural network (ANN) hybrid models. In this research, the SARIMA model was obtained as SARIMA (0, 0, 1) (0, 3, 2)12 but the residual of the SARIMA model could not meet the autocorrelation requirement of the modelling approach. In order to overcome this weakness of the SARIMA model, a new SARIMA–ANN hybrid time series model was developed and demonstrated in this study. The average monthly RWL data from January 2004 to November 2020 was used for developing and testing the models. Several model assessment criteria were used to evaluate the performance of each model. The findings showed that the SARIMA–ANN hybrid model outperformed the remaining models considering all performance criteria for reservoir RWL prediction. Thus, this study conclusively proves that the SARIMA–ANN hybrid model could be a viable option for the accurate prediction of reservoir water level.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献