Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China

Author:

Liu Yue,Zhang Jianyun,Bao ZhenxinORCID,Yang Yanqing,Wang GuoqingORCID

Abstract

In-depth understanding and accurate simulation of hydrological processes are of great significance for sustainable development and management of water resources. The study focused on a semi-arid catchment, the upper Tang River catchment in northern China, and investigated the performance of the RCCC-WBM model based on the detection results of trend, mutation, and periodicity. Results show that (1) as a result of climate change and intensive human activities, the observed runoff series after TFPW (trend-free pre-whiting) pretreatment presented a significant downward trend with the mutation point in 1996; (2) the abrupt change of air temperature series was also in 1996 with a significant rising trend, while the annual precipitation series exhibited an insignificant declining trend with no obvious mutation during 1973–2014; (3) the precipitation and runoff series had periodic variations roughly 7a multiples with the periodic oscillation strongest around 14a, while the air temperature series showed only one dominant period of 28a; (4) the RCCC-WBM model performed well in discharge simulation before the mutation year but gradually lost its stability after 1996, which was mainly affected by anthropogenic activities. It is essential to accurately identify the characteristics of hydrological elements and improve the applicability of hydrological models in the changing environment in future studies.

Funder

National Key Research and Development Programs of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3