A DMAIC Integrated Fuzzy FMEA Model: A Case Study in the Automotive Industry

Author:

Godina RaduORCID,Silva Beatriz Gomes Rolis,Espadinha-Cruz PedroORCID

Abstract

The growing competitiveness in the automotive industry and the strict standards to which it is subject, require high quality standards. For this, quality tools such as the failure mode and effects analysis (FMEA) are applied to quantify the risk of potential failure modes. However, for qualitative defects with subjectivity and associated uncertainty, and the lack of specialized technicians, it revealed the inefficiency of the visual inspection process, as well as the limitations of the FMEA that is applied to it. The fuzzy set theory allows dealing with the uncertainty and subjectivity of linguistic terms and, together with the expert systems, allows modeling of the knowledge involved in tasks that require human expertise. In response to the limitations of FMEA, a fuzzy FMEA system was proposed. Integrated in the design, measure, analyze, improve and control (DMAIC) cycle, the proposed system allows the representation of expert knowledge and improves the analysis of subjective failures, hardly detected by visual inspection, compared to FMEA. The fuzzy FMEA system was tested in a real case study at an industrial manufacturing unit. The identified potential failure modes were analyzed and a fuzzy risk priority number (RPN) resulted, which was compared with the classic RPN. The main results revealed several differences between both. The main differences between fuzzy FMEA and classical FMEA come from the non-linear relationship between the variables and in the attribution of an RPN classification that assigns linguistic terms to the results, thus allowing a strengthening of the decision-making regarding the mitigation actions of the most “important” failure modes.

Funder

Fundação para a Ciência e a Tecnologia: FCT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3