Fuzzy FMEA-Resilience Approach for Maintenance Planning in a Plastics Industry ‎

Author:

Al-Refaie Abbas,Aljundi Hedayeh

Abstract

The productivity and efficiency of industrial systems are highly affected by failures and machine breakdowns. Further, in asset-intensive industries, unexpected failures are considered the primary source of operational risk. In response, the maintenance department strives to calculate reliable estimates of the risk levels associated with such failures and develop resilient maintenance strategies that enable it to respond effectively to equipment failures. The research developed a framework for integrating fuzzy failure mode and effects analysis (FFMEA) with resilience engineering (RE) concepts for maintenance planning. The framework consists of four main stages: FFMEA, Risk iso-surface (RI), resilience assessment, and maintenance planning. In FFMEA, multiple sub-factors were considered for each main risk factor and evaluated using fuzzy logic. Then, in the RI stage, the risk priority number (RPN) was calculated through a fuzzy approach that considered the order of the importance of the main three risk factors. The fuzzy resilience assessment was applied through a survey of fifty-one questions related to the main four RE potentials to determine the need for resilient maintenance strategies. Finally, the RPN-Resilience diagram was employed to classify maintenance activities into six main maintenance strategies. A case study from a production line of plastic bags was used for illustration. The main advantage of the proposed FFMEA is that it divides the main risk criteria into sub-criteria to increase the accuracy of risk assessment and evaluate resilience potentials under fuzziness. In conclusion, the integration of the risk-resilience evaluation is a valuable tool for effectively planning maintenance activities.

Publisher

PHM Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3