Probabilistic Fuzzy System for Evaluation and Classification in Failure Mode and Effect Analysis

Author:

Cardiel-Ortega José Jovani1ORCID,Baeza-Serrato Roberto2ORCID

Affiliation:

1. Centro de Innovación Aplicada en Tecnologías Competitivas CIATEC A.C., Omega 201, Industrial Delta, León 37545, Guanajuato, Mexico

2. Departamento de Estudios Multidisciplinarios, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Yuriria 38944, Guanajuato, Mexico

Abstract

Failure Mode and Effect Analysis (FMEA) is an essential risk analysis tool that is widely applicable in various industrial sectors. This structured technique allows us to identify and assign priority levels to potential failures that violate the reliability of a system or process. Failure evaluation occurs in a decision-making environment with uncertainty. This study proposes a probabilistic fuzzy system that integrates linguistic and stochastic uncertainty based on a Mamdani-type model to strengthen the FMEA technique. The system is based on analyzing the frequency of failures and obtaining the parameters to determine the probability of occurrence through the Poisson distribution. In addition, the severity and detection criteria were evaluated by the experts and modeled using the Binomial distribution. The evaluation result is a discrete value analogous to the process of obtaining the success or failure of the expert generating the evaluation of 10 Bernoulli experiments. Three fuzzy inference expert systems were developed to combine multiple experts’ opinions and reduce linguistic subjectivity. The case study was implemented in the knitting area of a textile company in the south of Guanajuato to validate the proposed approach. The potential failure of the knitting machinery, which compromises the top tension subsystem’s performance and the product’s quality, was analyzed. The proposed system, which is based on a robust mathematical model, allows for reliable fault evaluation with a simple scale. The classification performed by the system and the one performed by the experts has similar behavior. The results show that the proposed approach supports decision-making by prioritizing failure modes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3