Deep Learning-Based Automated Background Removal for Structural Exterior Image Stitching

Author:

Kang Myung Soo,An Yun-KyuORCID

Abstract

This paper presents a deep learning-based automated background removal technique for structural exterior image stitching. In order to establish an exterior damage map of a structure using an unmanned aerial vehicle (UAV), a close-up vision scanning is typically required. However, unwanted background objects are often captured within the scanned digital images. Since the unnecessary background objects often cause serious distortion on the image stitching process, they should be removed. In this paper, the automated background removal technique using deep learning-based depth estimation is proposed. Based on the fact that the region of interest has closer working distance than the background ones from the camera, the background region within the digital images can be automatically removed using a deep learning-based depth estimation network. In addition, an optimal digital image selection based on feature matching-based overlap ratio is proposed. The proposed technique is experimentally validated using UAV-scanned digital images acquired from an in-situ high-rise building structure. The validation test results show that the optimal digital images obtained from the proposed technique produce the precise structural exterior map with computational cost reduction of 85.7%, while raw scanned digital images fail to construct the structural exterior map and cause serious stitching distortion.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3