Deep super resolution crack network (SrcNet) for improving computer vision–based automated crack detectability in in situ bridges

Author:

Bae Hyunjin1,Jang Keunyoung1,An Yun-Kyu1ORCID

Affiliation:

1. Department of Architectural Engineering, Sejong University, Seoul, South Korea

Abstract

This article proposes a new end-to-end deep super-resolution crack network (SrcNet) for improving computer vision–based automated crack detectability. The digital images acquired from large-scale civil infrastructures for crack detection using unmanned robots often suffer from motion blur and lack of pixel resolution, which may degrade the corresponding crack detectability. The proposed SrcNet is able to significantly enhance the crack detectability by augmenting the pixel resolution of the raw digital image through deep learning. SrcNet basically consists of two phases: phase I—deep learning–based super resolution (SR) image generation and phase II—deep learning–based automated crack detection. Once the raw digital images are obtained from a target bridge surface, phase I of SrcNet generates the corresponding SR images to the raw digital images. Then, phase II automatically detects cracks from the generated SR images, making it possible to remarkably improve the crack detectability. SrcNet is experimentally validated using the digital images obtained using a climbing robot and an unmanned aerial vehicle from in situ concrete bridges located in South Korea. The validation test results reveal that the proposed SrcNet shows 24% better crack detectability compared to the crack detection results using the raw digital images.

Funder

Ministry of Land, Infrastructure and Transport of Korea Government

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3