Intelligent crack identification method for high‐rise buildings aided by synthetic environments

Author:

Yao Ziluo1,Jiang Sheng1,Wang Shuo2,Wang Jingjing1,Liu Hai1,Narazaki Yasutaka3,Cui Jie1,Spencer Billie F.2

Affiliation:

1. School of Civil Engineering Guangzhou University Guangzhou China

2. Department of Civil and Environmental Engineering University of Illinois Urbana‐Champaign Urbana IL USA

3. Zhejiang University/University of Illinois Urbana‐Champaign Institute Zhejiang University Zhejiang China

Abstract

SummaryCracks can develop in high‐rise buildings because of long‐term environmental changes and extreme loading events such as strong winds or earthquakes. Although deep learning‐based identification methods can efficiently identify cracks, the accuracy of crack identification in high‐rise buildings needs to be improved due to the lack of crack datasets specifically related to high‐rise structures. Moreover, the number of available images of cracks in high‐rise is limited. To this end, this paper establishes an intelligent crack identification method based on a photorealistic synthetic modeling technique. First, a computer graphics (CG) model of a high‐rise building with assumed damage is constructed. Subsequently, the CG model is utilized to generate a dataset that includes photorealistic images of the high‐rise building as well as corresponding labels for various components and types of damage. The generated dataset is then used to train a DeepLabv3 + neural network for structural component and damage identification, followed by validation by employing images of both synthetic and full‐scale high‐rise buildings. The trained network can accurately identify different components in images of the full‐scale, high‐rise building and identify cracks that are intentionally synthesized in those images. The results show that the synthetic dataset generated by the CG model not only allows for fast and efficient labeling for the purpose of neural network training but also outperforms methods that do not consider any application‐specific context in crack identification.

Funder

China Scholarship Council

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3