Synthesis and Evaluation of Saccharide-Based Aliphatic and Aromatic Esters as Antimicrobial and Antibiofilm Agents

Author:

Campana RaffaellaORCID,Merli Alessio,Verboni Michele,Biondo Francesca,Favi GianfrancoORCID,Duranti AndreaORCID,Lucarini SimoneORCID

Abstract

A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3