Optimization of Enzymatic Synthesis of D-Glucose-Based Surfactants Using Supported Aspergillus niger Lipase as Biocatalyst

Author:

Spalletta Alexis1ORCID,Joly Nicolas1ORCID,Martin Patrick1ORCID

Affiliation:

1. Unité Transformations & Agroressources, ULR7519, Université d’Artois-UniLaSalle, F-62408 Bethune, France

Abstract

Surfactants are amphiphilic molecules with the ability to modify the surface tension between two surfaces. They can be obtained by various methods, the main one being synthetic, from petroleum-based substrates. Their universal use in a wide range of fields has created a global market and, consequently, ecological, and economic expectations for their production. Biocatalyzed processes, involving enzymes, can address this objective with processes complying with the principles of green chemistry: energy saving, product selectivity, monodispersity, and reduction in the use of solvents, with energy eco-efficiency. For example, fatty-acid carbohydrate esters are biobased surfactants that can be synthesized by lipases. In this work, we were interested in the synthesis of D-glucose lauric ester, which presents interesting properties described in the literature, with Aspergillus niger lipase, rarely described with sugar substrates. We optimized the synthesis for different parameters and reaction media. This lipase appeared to be highly selective for 6-O-lauroyl-D-glucopyranose. However, the addition of DMSO (dimethyl sulfoxide) as a co-solvent displays a duality, increasing yields but leading to a loss of selectivity. In addition, DMSO generates more complex and energy-intensive purification and processing steps. Consequently, a bio-sourced alternative as co-solvent with 2MeTHF3one (2-methyltetrahydrofuran-3-one) is proposed to replace DMSO widely described in the literature.

Funder

University of Artois

Publisher

MDPI AG

Subject

Organic Chemistry,Inorganic Chemistry,Electrochemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3