An Experimental Study on the Dilute Phase Pneumatic Conveying of Fat-Filled Milk Powders: Particle Breakage

Author:

Zhang Fuweng12ORCID,O’Mahony James A.3ORCID,Miao Song4ORCID,Cronin Kevin2

Affiliation:

1. Qingyuan Innovation Laboratory, Quanzhou 362801, China

2. Department of Process and Chemical Engineering, University College Cork, T12 YN60 Cork, Ireland

3. School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland

4. Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland

Abstract

Powder breakage during pneumatic conveying negatively affects the properties of dairy products and causes increased dusting, reduced wettability, and decreased product performance. In particular, particle breakage is a serious issue for fat-filled milk powder (FFMP) which, if it breaks, releases fat that causes odours and leads to sticky blocked pipes. In this work, a conveying rig (dilute phase, positive pressure) with 50 mm diameter food grade stainless steel pipes (1.5 m high and 5 m conveying distance with three 90° bends, two in the vertical plane and one in the horizontal plane) was built as the test system. The effects of operating conditions (conveying air velocity and solid loading rate) on the attrition of FFMP in a dilute phase conveying system were experimentally studied. Four quality characteristics were measured before and after conveying: bulk density, particle size distribution, wettability, and solubility, to access the influence of particle breakage. Conveying air speed shows a significant impact on powder breakage. As air speed increased, more breakage occurred, and the volume mean diameter D[4,3] decreased by around 50%, using the largest conveying air speed of 38 m/s. Bulk density increased accordingly whereas wettability decreased with an increase in air speed, resulting from the higher breakage rate. On other hand, improving the solid loading rate can further reduce the breakage level, but the positive effect is not as good as decreasing air speed.

Funder

Qingyuan Innovation Laboratory

Enterprise Ireland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3