Novel Solvent–Latex Mixing: Thermal Insulation Performance of Silica Aerogel/Natural Rubber Composite

Author:

Boonrawd ChayananORCID,Yodyingyong Supan,Benyahia Lazhar,Triampo Darapond

Abstract

In this work, the novel natural rubber latex (NRL) mixing was approached. The mixing process was carried out by using n-hexane as the dispersed phase of silica aerogel which acted as thermal insulation filler prior to NRL mixing. The silica aerogel/NR composites were prepared with different silica aerogel contents of 20, 40, 60, 80, and 100 parts per hundred rubber (phr). The morphology of the 40 phr composite showed the NR macropore formation with silica aerogel intercalated layers. The optimal content of silica aerogels and n-hexane were the key to obtaining the NR macropore. The thermal insulation performance of silica aerogel/NR composites was investigated because of their porous structures. The thermal conductivity of the composites were lower than that of the neat NR sheet and decreased from 0.081 to 0.055 W m−1·K−1 with increasing silica aerogel content. The lower densities of the composites than that of the NR sheet were revealed noticeably. In addition, the silica aerogel/NR composites exhibited a higher heat retardant ability than that of the NR sheet, and the comparable glass transition temperatures (Tg) of the composites and the neat NR indicated the maintained flexibility at ambient temperature or higher, which can benefit various temperature applications. The overall results demonstrated that the silica aerogel/NR composites from the novel NRL mixing preparation could be a promising technique to develop the porous materials and be utilised as thermal insulation products and building constructions.

Funder

Thailand Research Fund

Science Achievement Scholarship of Thailand., Ministry of Higher Education, Science, Research and Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3