Typhoon Quantitative Rainfall Prediction from Big Data Analytics by Using the Apache Hadoop Spark Parallel Computing Framework

Author:

Wei Chih-ChiangORCID,Chou Tzu-Hao

Abstract

Situated in the main tracks of typhoons in the Northwestern Pacific Ocean, Taiwan frequently encounters disasters from heavy rainfall during typhoons. Accurate and timely typhoon rainfall prediction is an imperative topic that must be addressed. The purpose of this study was to develop a Hadoop Spark distribute framework based on big-data technology, to accelerate the computation of typhoon rainfall prediction models. This study used deep neural networks (DNNs) and multiple linear regressions (MLRs) in machine learning, to establish rainfall prediction models and evaluate rainfall prediction accuracy. The Hadoop Spark distributed cluster-computing framework was the big-data technology used. The Hadoop Spark framework consisted of the Hadoop Distributed File System, MapReduce framework, and Spark, which was used as a new-generation technology to improve the efficiency of the distributed computing. The research area was Northern Taiwan, which contains four surface observation stations as the experimental sites. This study collected 271 typhoon events (from 1961 to 2017). The following results were obtained: (1) in machine-learning computation, prediction errors increased with prediction duration in the DNN and MLR models; and (2) the system of Hadoop Spark framework was faster than the standalone systems (single I7 central processing unit (CPU) and single E3 CPU). When complex computation is required in a model (e.g., DNN model parameter calibration), the big-data-based Hadoop Spark framework can be used to establish highly efficient computation environments. In summary, this study successfully used the big-data Hadoop Spark framework with machine learning, to develop rainfall prediction models with effectively improved computing efficiency. Therefore, the proposed system can solve problems regarding real-time typhoon rainfall prediction with high timeliness and accuracy.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3