Abstract
Rainfall prediction remains a hot research topic in smart city environments. Precise rainfall prediction in smart cities becomes essential for planning security measures before construction and transportation activities, flight operations, water reservoir systems, and agricultural tasks. Precise rainfall forecasting now becomes more complex than before because of extreme climatic changes. Machine learning (ML) approaches can forecast rainfall by deriving hidden patterns from historic meteorological datasets. Selecting a suitable classification method for forecasting has become a tough job. This article introduces the Fuzzy Cognitive Maps with a Metaheuristics-based Rainfall Prediction System (FCMM-RPS) technique. The intention of the FCMM-RPS technique is to predict rainfall automatically and efficiently. To accomplish this, the presented FCMM-RPS technique primarily pre-processes the rainfall data to make it compatible. In addition, the presented FCMM-RPS technique predicts rainfall using the FCM model. To enhance the rainfall prediction outcomes of the FCM model, the parameter optimization process is performed using a modified butterfly optimization algorithm (MBOA). The performance assessment of the FCMM-RPS technique is tested on a rainfall dataset. A widespread comparison study highlights the improvements of the FCMM-RPS technique in the rainfall forecasting process compared to existing techniques with a maximum accuracy of 94.22%.
Funder
Princess Nourah bint Abdulrahman University
Deanship of Scientific Research at Umm Al-Qura University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献