Prediction Skill of Extended Range 2-m Maximum Air Temperature Probabilistic Forecasts Using Machine Learning Post-Processing Methods

Author:

Peng Ting,Zhi Xiefei,Ji Yan,Ji Luying,Tian Ye

Abstract

The extended range temperature prediction is of great importance for public health, energy and agriculture. The two machine learning methods, namely, the neural networks and natural gradient boosting (NGBoost), are applied to improve the prediction skills of the 2-m maximum air temperature with lead times of 1–35 days over East Asia based on the Environmental Modeling Center, Global Ensemble Forecast System (EMC-GEFS), under the Subseasonal Experiment (SubX) of the National Centers for Environmental Prediction (NCEP). The ensemble model output statistics (EMOS) method is conducted as the benchmark for comparison. The results show that all the post-processing methods can efficiently reduce the prediction biases and uncertainties, especially in the lead week 1–2. The two machine learning methods outperform EMOS by approximately 0.2 in terms of the continuous ranked probability score (CRPS) overall. The neural networks and NGBoost behave as the best models in more than 90% of the study area over the validation period. In our study, CRPS, which is not a common loss function in machine learning, is introduced to make probabilistic forecasting possible for traditional neural networks. Moreover, we extend the NGBoost model to atmospheric sciences of probabilistic temperature forecasting which obtains satisfying performances.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3