Predictability of Week-3–4 Average Temperature and Precipitation over the Contiguous United States

Author:

DelSole Timothy1,Trenary Laurie1,Tippett Michael K.2,Pegion Kathleen1

Affiliation:

1. George Mason University, and Center for Ocean–Land–Atmosphere Studies, Fairfax, Virginia

2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jidda, Saudi Arabia

Abstract

Abstract This paper demonstrates that an operational forecast model can skillfully predict week-3–4 averages of temperature and precipitation over the contiguous United States. This skill is demonstrated at the gridpoint level (about 1° × 1°) by decomposing temperature and precipitation anomalies in terms of an orthogonal set of patterns that can be ordered by a measure of length scale and then showing that many of the resulting components are predictable and can be predicted in observations with statistically significant skill. The statistical significance of predictability and skill are assessed using a permutation test that accounts for serial correlation. Skill is detected based on correlation measures but not based on mean square error measures, indicating that an amplitude correction is necessary for skill. The statistical characteristics of predictability are further clarified by finding linear combinations of components that maximize predictability. The forecast model analyzed here is version 2 of the Climate Forecast System (CFSv2), and the variables considered are temperature and precipitation over the contiguous United States during January and July. A 4-day lagged ensemble, comprising 16 ensemble members, is used. The most predictable components of winter temperature and precipitation are related to ENSO, and other predictable components of winter precipitation are shown to be related to the Madden–Julian oscillation. These results establish a scientific basis for making week-3–4 weather and climate predictions.

Funder

National Science Foundation

National Oceanographic and Atmospheric Administration

National Aeronautics and Space Administration

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3