Flood Control Optimization of Reservoir Group Based on Improved Sparrow Algorithm (ISSA)

Author:

He Ji,Liu Sheng-Ming,Chen Hai-TaoORCID,Wang Song-Lin,Guo Xiao-Qi,Wan Yu-Rong

Abstract

The optimal control problem of reservoir group flood control is a complex, nonlinear, high-dimensional, multi-peak extremum problem with many complex constraints and interdependent decision variables. The traditional algorithm is slow and easily falls into the local optimum when solving the problem of the flood control optimization of reservoir groups. The intelligent algorithm has the characteristics of fast computing speed and strong searching ability, which can make up for the shortcomings of the traditional algorithm. In this study, the improved sparrow algorithm (ISSA) combining Cauchy mutation and reverse learning strategy is used to solve the flood control optimization problem of reservoir groups. This study takes Sanmenxia Reservoir and Xiaolangdi Reservoir on the mainstream of the Yellow River as the research object and Huayuankou as the downstream control point to establish a joint flood control optimization operation model of cascade reservoirs. The results of the improved sparrow algorithm (ISSA), particle swarm optimization (POS) and sparrow algorithm (SSA) are compared and analyzed. The results show that when the improved ISSA algorithm is used to solve the problem, the maximum flood peak flow of the garden entrance control point is 11,676.3 m3, and the peak cutting rate is 48%. The optimization effect is obviously better than the other two algorithms. This study provides a new and effective way to solve the problem of flood control optimization of reservoir groups.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3