Joint Optimal Use of Sluices of a Group of Cascade Hydropower Stations under High-Intensity Peak Shaving and Frequency Regulation

Author:

Mou Shiyu1,Qu Tian1,Li Jia1,Wen Xin2,Liu Yu2

Affiliation:

1. Dadu River Basin Production Command Center, China Energy Investment, Chengdu 610041, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

With the large-scale development and grid connection of renewable energy, hydropower faces more intense and frequent peak shaving and frequency regulation, giving rise to water level fluctuations and frequently forced sluice adjustments at hydropower stations. This paper proposes a model that combines “offline calculation” and “online search”. First, feasible sluice opening combinations for different water levels at each hydropower station are calculated offline, and a sluice operation strategy table is constructed. Subsequently, an optimal sluice operation strategy is searched online according to the real-time water level and various regulatory requirements. As an example, we select three hydropower stations in the middle reach of the Dadu River in China, namely, Pubugou, Shenxigou, and Zhentouba. The results show that the total number of adjustments of the sluices of the cascade hydropower stations was reduced from 1195 to 675, a reduction of 43.5%, and the leading hydropower station, Pubugou, met water level control requirements, whereas the fluctuations in the water level of the two downstream daily regulating hydropower stations, Shenxigou and Zhentouba, were reduced by 1.38 m and 0.55 m, respectively. The results indicate that the sluices of hydropower stations were optimally used under high-intensity peak shaving and frequency regulation.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3