Research on Rapid Detection for TOC in Water Based on UV-VIS Spectroscopy and 1D-SE-Inception Networks

Author:

Li Yu1,Bi Weihong1,Jia Yajie1,Wang Bing2,Jin Wa1,Fu Guangwei1,Fu Xinghu1ORCID

Affiliation:

1. School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao 066004, China

2. Qinhuangdao Hongyan Photoelectric Technology Co., Ltd., Qinhuangdao 066100, China

Abstract

In recent years, the rapid monitoring of total organic carbon (TOC) in natural waters has attracted increasing attention. Optical methods are a valid tool for measurement. Nevertheless, how to more accurately establish the mapping relationship between spectroscopy and TOC concentrations is currently a challenge. A new method based on UV-VIS spectroscopy with a deep convolutional network is proposed for the quantification of TOC in water in this paper. The Inception network, originally used to process two-dimensional image data, was redesigned as a model capable of processing one-dimensional spectral data, while the convolution and pooling scale were modified to adapt to one-dimensional data. Simultaneously, squeeze and extraction (SE) blocks were applied to the designed network to enhance feature information and to suppress interference from useless information in the regression process. The method was tested on samples collected from the sea and river estuaries in several provinces in China. When compared to the classical least squares support vector machine (LSSVM), the experimental results showed that the proposed 1D-Inception network structure can provide more accurate regression results. The SE block can significantly improve the feature extraction and expression capabilities of the 1D-Inception network structure and suppress redundant information, thereby achieving better model performance.

Funder

National Key R&D Program of China

S&T Program of Hebei

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3