Identify and Delimitate Urban Hotspot Areas Using a Network-Based Spatiotemporal Field Clustering Method

Author:

Xia ,Li ,Chen ,Liao

Abstract

Pick-up and drop-off events of taxi trajectory data contain rich information about residents’ travel activities and road traffic. Such data have been widely applied in urban hotspot detection in recent years. However, few studies have attempted to delimitate the urban hotspot scope using taxi trajectory data. On this basis, the current study firstly introduces a network-based spatiotemporal field (NSF) clustering approach to discover and identify hotspots. Our proposed method expands the notion from spatial to space–time dimension and from Euclidean to network space by comparing with traditional spatial clustering analyses. In addition, a concentration index of hotspot areas is presented to refine the surface of centredness to delimitate the hotspot scope further. This index supports the quantitative depiction of hotspot areas by generating two standard deviation isolines. In the case study, we analyze the spatiotemporal dynamic patterns of hotspots at different days and times of day using the NSF method. Meanwhile, we also validate the effectiveness of the proposed method in identifying hotspots to evaluate the delimitating results. Experimental results reveal that the proposed approach can not only help detect detailed microscale characteristics of urban hotspots but also identify high-concentration patterns of pick-up incidents in specific places.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A K-Shape Clustering Based Transformer-Decoder Model for Predicting Multi-Step Potentials of Urban Mobility Field;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Modeling Visit Potential to Predict Hotspots of a Future District;Infrastructures;2023-10-11

3. Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model;Mathematics;2023-09-26

4. Mobile Collaborative Heatmapping to Infer Self-Guided Walking Tourists’ Preferences for Geomedia;ISPRS International Journal of Geo-Information;2023-07-15

5. A Systematic Study on methods of Spatiotemporal Hotspot Detection and Evaluation metrics;2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3