Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs

Author:

Warguła ŁukaszORCID,Kukla MateuszORCID,Lijewski Piotr,Dobrzyński Michał,Markiewicz Filip

Abstract

The use of alternative fuels is a contemporary trend in science aimed at the protection of non-renewable resources, reducing the negative impact on people and reducing the negative impact on the natural environment. Liquefied petroleum gas (LPG) is an alternative fuel within the meaning of the European Union Directive (2014/94/UE), as it is an alternative for energy sources derived from crude oil. The use of LPG fuel in low-power internal combustion engines is one of the currently developed scientific research directions. It results from the possibility of limiting air pollutant emissions compared to the commonly used gasoline and the lower cost of this fuel in many countries. By “gasoline 95” the Authors mean non-lead petrol as a flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines, whereas 95 is an octane rating (octane number). This article presents the results of research on fuel consumption, toxic exhaust gas emission, and operating costs of a woodchipper used for shredding branches with a diameter of up to 100 mm in real working conditions. The woodchipper, powered by a 9.5 kW internal combustion engine, fueled by gasoline and LPG was tested. Liberal regulations of the European Union (Regulation 2016/1628/EU) on the emission of harmful exhaust compounds from small spark-ignition engines (up to 19 kW) and non-road applications contribute to the low technical advancement level of these engines. The authors researched a relatively simple and cheap LPG fueling system, as in their opinion, such a system has the best chance of being implemented for use. In the study, the branches of cherry plum were shredded (Prunus cerasiferaEhrh. Beitr. Naturk. 4:17. 1789 (Gartenkalender4:189-204. 1784)). Their diameter was ca. 80 mm, length 3 m, and moisture content ca. 25%. The system was tested during the shredding of the branches in real working conditions (the frequency of supplying the branches about 4 min−1 and the mass productivity of about 0.73 t/h). Based on the recorded results, it was found that the LPG fueled engine was characterized by higher carbon monoxide (CO) and nitrogen oxides (NOx) emissions by 22% and 27%, respectively. A positive effect of using LPG was the reduction of fuel consumption by 28% and carbon dioxide (CO2) and hydrocarbons (HC) emissions by 37% and 83%, respectively. The results of the research show that the use of alternative fuels can bring benefits in terms of CO2 and HC emissions, but at the same time be characterized by an increase in CO and NOx emissions. Further research should be conducted on innovative alternative fuel supply systems, such as in the automotive industry. At the same time, legislators should limit the use of low-quality fuel supply systems with the limits of pollutant emissions in exhaust gases, contributing to the development and economic competitiveness of new fuel injection systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Poznań Air Pollution Analysis for 2015-2017

2. Human health damages related to air pollution in China

3. Meteorology of air pollution in Los Angeles

4. Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile;Marchant-Fuentes;Environmetrics,2019

5. A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3