Validation of Ecology and Energy Parameters of Diesel Exhausts Using Different Fuel Mixtures, Consisting of Hydrogenated Vegetable Oil and Diesel Fuels, Presented at Real Market: Approaches Using Artificial Neural Network for Large-Scale Predictions

Author:

Matijošius Jonas12ORCID,Rimkus Alfredas13ORCID,Gruodis Alytis4

Affiliation:

1. Department of Automobile Transport Engineering, Technical Faculty, Vilnius College of Technologies and Design, Olandu Str. 16, LT-01100 Vilnius, Lithuania

2. Mechanical Science Institute, Vilnius Gediminas Technical University-VILNIUS TECH, Plytinės Str. 25, LT-10105 Vilnius, Lithuania

3. Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University-VILNIUS TECH, Plytinės Str. 25, LT-10105 Vilnius, Lithuania

4. Faculty of Public Governance and Business, Mykolas Romeris University, Ateities St. 20, LT-08303 Vilnius, Lithuania

Abstract

Machine learning models have been used to precisely forecast emissions from diesel engines, specifically examining the impact of various fuel types (HVO10, HVO 30, HVO40, HVO50) on the accuracy of emission forecasts. The research has revealed that models with different numbers of perceptrons had greater initial error rates, which subsequently reached a stable state after further training. Additionally, the research has revealed that augmenting the proportion of Hydrogenated Vegetable Oil (HVO) resulted in the enhanced precision of emission predictions. The use of visual data representations, such as histograms and scatter plots, yielded significant insights into the model’s versatility across different fuel types. The discovery of these results is vital for enhancing engine performance and fulfilling environmental regulations. This study highlights the capacity of machine learning in monitoring the environment and controlling engines and proposes further investigation into enhancing models and making real-time predictive adjustments. The novelty of the research is based on the determination of the input interface (a sufficient amount of input parameters, including chemical as well as technical), which characterizes the different regimes of the diesel engine. The novelty of the methodology is based on the selection of a suitable ANN type and architecture, which allows us to predict the required parameters for a wide range of input intervals (different types of mixtures consisting of HVO and pure diesel, different loads, different RPMs, etc.).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3