Multipath/NLOS Detection Based on K-Means Clustering for GNSS/INS Tightly Coupled System in Urban Areas

Author:

Wang HaoORCID,Pan Shuguo,Gao Wang,Xia Yan,Ma ChunORCID

Abstract

Due to the massive multipath effects and non-line-of-sight (NLOS) signal receptions, the accuracy and reliability of GNSS positioning solution can be severely degraded in a highly urbanized area, which has a negative impact on the performance of GNSS/INS integrated navigation. Therefore, this paper proposes a multipath/NLOS detection method based on the K-means clustering algorithm for vehicle GNSS/INS integrated positioning. It comprehensively considers different feature parameters derived from GNSS raw observations, such as the satellite-elevation angle, carrier-to-noise ratio, pseudorange residual, and pseudorange rate consistency to effectively classify GNSS signals. In view of the influence of different GNSS signals on positioning results, the K-means clustering algorithm is exploited to divide the observation data into two main categories: direct signals and indirect signals (including multipath and NLOS signals). Then, the multipath/NLOS signal is separated from the observation data. Finally, this paper uses the measured vehicle GNSS/INS observation data, including offline dataset and online dataset, to verify the accuracy of signal classification based on double-differenced pseudorange positioning. A series of experiments conducted in typical urban scenarios demonstrate that the proposed method could ameliorate the positioning accuracy significantly compared with the conventional GNSS/INS integrated navigation. After excluding GNSS outliers, the positioning accuracy of the offline dataset is improved by 16% and 85% in the horizontal and vertical directions, respectively, and the positioning accuracy of the online dataset is improved by 21% and 41% in the two directions. This method does not rely on external geographic information data and other sensors, which has better practicability and environmental adaptability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3