A survey of machine learning techniques for improving Global Navigation Satellite Systems

Author:

Mohanty Adyasha,Gao GraceORCID

Abstract

AbstractGlobal Navigation Satellite Systems (GNSS)-based positioning plays a crucial role in various applications, including navigation, transportation, logistics, mapping, and emergency services. Traditional GNSS positioning methods are model-based, utilizing satellite geometry and the known properties of satellite signals. However, model-based methods have limitations in challenging environments and often lack adaptability to uncertain noise models. This paper highlights recent advances in machine learning (ML) and its potential to address these limitations. It covers a broad range of ML methods, including supervised learning, unsupervised learning, deep learning, and hybrid approaches. The survey provides insights into positioning applications related to GNSS, such as signal analysis, anomaly detection, multi-sensor integration, prediction, and accuracy enhancement using ML. It discusses the strengths, limitations, and challenges of current ML-based approaches for GNSS positioning, providing a comprehensive overview of the field.

Publisher

Springer Science and Business Media LLC

Reference193 articles.

1. P. Misra, P. Enge, Global Positioning System: Signals, Measurements, and Performance (Ganga-Jamuna Press, Lincoln, 2006)

2. D. Gebre-Egziabher, S. Gleason, GNSS Applications and Methods. GNSS Technology and Applications Series (Artech House, Norwood, 2009)

3. M. Karaim, M. Elsheikh, A. Noureldin, R. Rustamov, GNSS error sources. Multifunctional Operation and Application of GPS, 69–85 (2018) https://doi.org/10.5772/intechopen.71221

4. P. Groves, L. Wang, M. Adjrad, C. Ellul, GNSS shadow matching: The challenges ahead, in Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation, Tampa, Florida, pp. 2421–2443 (2015)

5. H. Kuusniemi, G. Lachapelle, GNSS signal reliability testing in urban and indoor environments, in Proceedings of the 2004 National Technical Meeting of the Institute of Navigation, San Diego, CA, pp. 210–224 (2004)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3