The Influence of Crystal Orientation on Subsurface Damage of Mono-Crystalline Silicon by Bound-Abrasive Grinding

Author:

Yang Wei,Li Yaguo

Abstract

Subsurface damage (SSD) produced in a grinding process will affect the performance and operational duration of single-crystal silicon. In order to reduce the subsurface damage depth generated during the grinding process by adjusting the process parameters (added), experiments were designed to investigate the influence of machining factors on SSD. This included crystal orientation, diamond grit size in the grinding wheel, peripheral speed of the grinding wheel, and feeding with the intention to optimize the parameters affecting SSD. Compared with isotropic materials such as glass, we considered the impact of grinding along different crystal directions <100> and <110> on subsurface damage depth (added). The Magnetorheological Finishing (MRF) spot technique was used to detect the depth of SSD. The results showed that the depth of SSD in silicon increased with the size of diamond grit. SSD can be reduced by either increasing the peripheral speed of the grinding wheel or decreasing the feeding rate of the grinding wheel in the <100> crystal orientation, if the same size of diamond grit was employed. In addition, we proposed a modified model around surface roughness and subsurface crack depth, which considered plastic and brittle deformation mechanisms and material properties of different crystal orientations. When the surface roughness (RZ) exceeded the brittle-plastic transition’s critical value RZC (RZC<100> > 1.5 μm, RZC<110> > 0.8 μm), cracks appeared on the subsurface. The experimental results were consistent with the predicted model, which could be used to predict the subsurface cracks by measuring the surface roughness. However, the model only gives the approximate range of subsurface defects, such as dislocations. The morphology and precise depth of plastic deformation subsurface defects, such as dislocations generated in the fine grinding stage, needed to be inspected by transmission electron microscopy (TEM), which were further studied.

Funder

Foundation for Youth Talents of LFRC, CAEP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference33 articles.

1. Materials Science and Technology of Optical Fabrication;Suratwala,2018

2. Formation of subsurface cracks in silicon wafers by grinding

3. Theoretical model of brittle material removal fraction related to surface roughness and subsurface damage depth of optical glass during precision grinding;Chen;Precis. Eng.,2017

4. Nondestructive measurement of machining-induced amorphous layers in single-crystal silicon by laser micro-Raman spectroscopy

5. Effects of grinding parameters on surface quality in silicon nitride grinding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3