Effect of sawing damage on flexibility of crystalline silicon wafers for thin flexible silicon solar cells

Author:

Hara Yutaka,Ide Koki,Nishihara Tappei,Yokogawa RyoORCID,Nakamura Kyotaro,Ohshita Yoshio,Kawatsu Tomoyuki,Nagai Toshiki,Aoki Yuma,Kobayashi Hayato,Yamada Noboru,Miyashita Yukio,Ogura AtsushiORCID

Abstract

Abstract The cost of solar cell production can be reduced by wafer thinning. A thinner wafer provides flexibility, and crystalline silicon solar cells are promising as flexible solar cells due to their flexibility. However, as wafers become thinner, production yield decreases due to wafer breakage caused by sawing damage; thus, to further reduce wafer thickness, it is necessary to suppress sawing damage. We investigated the flexibility of wafers under various slice conditions by conducting biaxial bending tests and clarified the dominant factor causing sawing damage to further reduce the wafer thickness for crystalline silicon solar cells. The results of damage observation by scanning electron microscopy and evaluation of the crystal structure by Raman spectroscopy confirm that the damage structure changes significantly depending on wire specifications. The results from the biaxial bending tests indicate that the three-dimensional flexibility of a wafer is determined by wire specifications.

Funder

New Energy and Industrial Technology Development Organization

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3