Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency

Author:

Mikołajczyk Tadeusz1ORCID,Mikołajewski Dariusz2ORCID,Kłodowski Adam3ORCID,Łukaszewicz Andrzej4ORCID,Mikołajewska Emilia5,Paczkowski Tomasz1ORCID,Macko Marek6ORCID,Skornia Marika2

Affiliation:

1. Department of Production Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland

2. Faculty of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland

3. Laboratory of Machine Design, Lappeenranta-Lahti University of Technology, 53850 Lappeenranta, Finland

4. Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland

5. Department of Physiotherapy, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland

6. Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland

Abstract

Mobile robots can perform tasks on the move, including exploring terrain, discovering landmark features, or moving a load from one place to another. This group of robots is characterized by a certain level of intelligence, allowing the making of decisions and responding to stimuli received from the environment. As part of Industry 5.0, such mobile robots and humans are expected to co-exist and work together in a shared environment to make human work less tiring, quicker, and safer. This can only be realized when clean, dense, and economical energy sources are available. The aim of the study is to analyze the state of the art and to identify the most important directions for future developments in energy sources of robotic power systems based mainly on batteries. The efficiency and performance of the battery depends on the design using different materials. Work environments and performance requirements are considered in this systematic review to classify solutions that help developers choose the best-suited power system for specific application. Indirectly, the aim of the work is to generate discussion within the scientific and engineering community. A narrative review of publications from six major bibliographic databases according to preset inclusion criteria is combined with a critical analysis of current and future technologies. The main findings of the review allow answering the question of what is the role of modern power source technologies, artificial intelligence, and ground-breaking research work in global policies related to energy saving, green policies, and sustainable development. The main opportunities and threats are discussed, and a brief feasibility analysis is carried out. The novelty of the article relates not only to the analysis of technologies, but also to approaches and their use under conditions of limited resource availability, when resource usage must be minimized. The article provides an overview of batteries, their specifications, classifications, and their advantages and disadvantages. In addition, we propose (1) an algorithm for selecting the main energy source for robot application, and (2) an algorithm for selecting an electrical system power supply. Current mobile robot batteries are, in most cases, the robot’s biggest limitation. Progress in battery development is currently too slow to catch up with the demand for robot autonomy and range requirements, limiting the development of mobile robots. Further intensive research and implementation work is needed to avoid years of delay in this area.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3