Mobile Charging Strategy for Wireless Rechargeable Sensor Networks

Author:

Chen Tzung-ShiORCID,Chen Jen-JeeORCID,Gao Xiang-You,Chen Tzung-Cheng

Abstract

In a wireless sensor network, the sensing and data transmission for sensors will cause energy depletion, which will lead to the inability to complete the tasks. To solve this problem, wireless rechargeable sensor networks (WRSNs) have been developed to extend the lifetime of the entire network. In WRSNs, a mobile charging robot (MR) is responsible for wireless charging each sensor battery and collecting sensory data from the sensor simultaneously. Thereby, MR needs to traverse along a designed path for all sensors in the WRSNs. In this paper, dual-side charging strategies are proposed for MR traversal planning, which minimize the MR traversal path length, energy consumption, and completion time. Based on MR dual-side charging, neighboring sensors in both sides of a designated path can be wirelessly charged by MR and sensory data sent to MR simultaneously. The constructed path is based on the power diagram according to the remaining power of sensors and distances among sensors in a WRSN. While the power diagram is built, charging strategies with dual-side charging capability are determined accordingly. In addition, a clustering-based approach is proposed to improve minimizing MR moving total distance, saving charging energy and total completion time in a round. Moreover, integrated strategies that apply a clustering-based approach on the dual-side charging strategies are presented in WRSNs. The simulation results show that, no matter with or without clustering, the performances of proposed strategies outperform the baseline strategies in three respects, energy saving, total distance reduced, and completion time reduced for MR in WSRNs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3