Charging Scheduling Method for Wireless Rechargeable Sensor Networks Based on Energy Consumption Rate Prediction for Nodes

Author:

Huang Songjiang1,Sha Chao1ORCID,Zhu Xinyi1,Wang Jingwen1,Wang Ruchuan1

Affiliation:

1. School of Computer Science, Software and Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

With the development of the IoT, Wireless Rechargeable Sensor Networks (WRSNs) derive more and more application scenarios with diverse performance requirements. In scenarios where the energy consumption rate of sensor nodes changes dynamically, most existing charging scheduling methods are not applicable. The incorrect estimation of node energy requirement may lead to the death of critical nodes, resulting in missing events. To address this issue, we consider both the spatial imbalance and temporal dynamics of the energy consumption of the nodes, and minimize the Event Missing Rate (EMR) as the goal. Firstly, an Energy Consumption Balanced Tree (ECBT) construction method is proposed to prolong the lifetime of each node. Then, we transform the goal into Maximizing the value of the Evaluation function of each node’s Energy Consumption Rate prediction (MEECR). Afterwards, the setting of the evaluation function is explored and the MEECR is further transformed into a variant of the knapsack problem, namely “the alternating backpack problem”, and solved by dynamic programming. After predicting the energy consumption rate of the nodes, a charging scheduling scheme that meets the Dual Constraints of Nodes’ energy requirements and MC’s capability (DCNM) is developed. Simulations demonstrate the advantages of the proposed method. Compared to the baselines, the EMR was reduced by an average of 35.2% and 26.9%.

Funder

National Natural Science Foundation of P.R. China

“333” Project of Jiangsu Province, and the Nature Science Research of Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3