Abstract
Consumer-grade Unmanned Aerial Vehicles (UAVs) are poorly suited to monitor complex scenes where multiple analysis tasks need to be carried out in real-time and in parallel to fulfil time-critical requirements. Therefore, we developed an innovative UAV agnostic system that is able to carry out multiple road infrastructure monitoring tasks simultaneously and in real-time. The aim of the paper is to discuss the system design considerations and the performance of the processing pipeline in terms of computational strain and latency. The system was deployed on a unique typology of UAV and instantiated with realistic placeholder modules that are of importance for infrastructure inspection tasks, such as vehicle detection for traffic monitoring, scene segmentation for qualitative semantic reasoning, and 3D scene reconstruction for large-scale damage detection. The system was validated by carrying out a trial on a highway in Guadalajara, Spain. By utilizing edge computation and remote processing, the end-to-end pipeline, from image capture to information dissemination to drone operators on the ground, takes on average 2.9 s, which is sufficiently quick for road monitoring purposes. The system is dynamic and, therefore, can be extended with additional modules, while continuously accommodating developments in technologies, such as IoT or 5G.
Funder
Innovation and Networks Executive Agency
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献