Towards Real-Time Building Damage Mapping with Low-Cost UAV Solutions

Author:

Nex Francesco,Duarte DiogoORCID,Steenbeek Anne,Kerle Norman

Abstract

The timely and efficient generation of detailed damage maps is of fundamental importance following disaster events to speed up first responders’ (FR) rescue activities and help trapped victims. Several works dealing with the automated detection of building damages have been published in the last decade. The increasingly widespread availability of inexpensive UAV platforms has also driven their recent adoption for rescue operations (i.e., search and rescue). Their deployment, however, remains largely limited to visual image inspection by skilled operators, limiting their applicability in time-constrained real conditions. This paper proposes a new solution to autonomously map building damages with a commercial UAV in near real-time. The solution integrates different components that allow the live streaming of the images on a laptop and their processing on the fly. Advanced photogrammetric techniques and deep learning algorithms are combined to deliver a true-orthophoto showing the position of building damages, which are already processed by the time the UAV returns to base. These algorithms have been customized to deliver fast results, fulfilling the near real-time requirements. The complete solution has been tested in different conditions, and received positive feedback by the FR involved in the EU funded project INACHUS. Two realistic pilot tests are described in the paper. The achieved results show the great potential of the presented approach, how close the proposed solution is to FR’ expectations, and where more work is still needed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3