An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles

Author:

Yu Qi1,Liu Ao1,Yang Xinxin1,Diao Weimin1

Affiliation:

1. School of Electronic Information Engineering, Beihang University, Beijing 100191, China

Abstract

Track fastener defect detection is an essential component in ensuring railway safety operations. Traditional manual inspection methods no longer meet the requirements of modern railways. The use of deep learning image processing techniques for classifying and recognizing abnormal fasteners is faster, more accurate, and more intelligent. With the widespread use of unmanned aerial vehicles (UAVs), conducting railway inspections using lightweight, low-power devices carried by UAVs has become a future trend. In this paper, we address the characteristics of track fastener detection tasks by improving the YOLOv4-tiny object detection model. We improved the model to output single-scale features and used the K-means++ algorithm to cluster the dataset, obtaining anchor boxes that were better suited to the dataset. Finally, we developed the FPGA platform and deployed the transformed model on this platform. The experimental results demonstrated that the improved model achieved an mAP of 95.1% and a speed of 295.9 FPS on the FPGA, surpassing the performance of existing object detection models. Moreover, the lightweight and low-powered FPGA platform meets the requirements for UAV deployment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3