SDFCNv2: An Improved FCN Framework for Remote Sensing Images Semantic Segmentation

Author:

Chen GuanzhouORCID,Tan XiaoliangORCID,Guo Beibei,Zhu KunORCID,Liao Puyun,Wang TongORCID,Wang Qing,Zhang Xiaodong

Abstract

Semantic segmentation is a fundamental task in remote sensing image analysis (RSIA). Fully convolutional networks (FCNs) have achieved state-of-the-art performance in the task of semantic segmentation of natural scene images. However, due to distinctive differences between natural scene images and remotely-sensed (RS) images, FCN-based semantic segmentation methods from the field of computer vision cannot achieve promising performances on RS images without modifications. In previous work, we proposed an RS image semantic segmentation framework SDFCNv1, combined with a majority voting postprocessing method. Nevertheless, it still has some drawbacks, such as small receptive field and large number of parameters. In this paper, we propose an improved semantic segmentation framework SDFCNv2 based on SDFCNv1, to conduct optimal semantic segmentation on RS images. We first construct a novel FCN model with hybrid basic convolutional (HBC) blocks and spatial-channel-fusion squeeze-and-excitation (SCFSE) modules, which occupies a larger receptive field and fewer network model parameters. We also put forward a data augmentation method based on spectral-specific stochastic-gamma-transform-based (SSSGT-based) during the model training process to improve generalizability of our model. Besides, we design a mask-weighted voting decision fusion postprocessing algorithm for image segmentation on overlarge RS images. We conducted several comparative experiments on two public datasets and a real surveying and mapping dataset. Extensive experimental results demonstrate that compared with the SDFCNv1 framework, our SDFCNv2 framework can increase the mIoU metric by up to 5.22% while only using about half of parameters.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Natural Resources Science and Technology Project of Hubei Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3