EIAGA-S: Rapid Mapping of Mangroves Using Geospatial Data without Ground Truth Samples

Author:

Zhao Yuchen1,Wu Shulei1,Zhang Xianyao1,Luo Hui1,Chen Huandong1,Song Chunhui1

Affiliation:

1. School of Information Science and Technology, Hainan Normal University, Haikou 571158, China

Abstract

Mangrove forests are essential for coastal protection and carbon sequestration, yet accurately mapping their distribution remains challenging due to spectral similarities with other vegetation. This study introduces a novel unsupervised learning method, the Elite Individual Adaptive Genetic Algorithm-Semantic Inference (EIAGA-S), designed for the high-precision semantic segmentation of mangrove forests using remote sensing images without the need for ground truth samples. EIAGA-S integrates an adaptive Genetic Algorithm with an elite individual’s evolution strategy, optimizing the segmentation process. A new Mangrove Enhanced Vegetation Index (MEVI) was developed to better distinguish mangroves from other vegetation types within the spectral feature space. EIAGA-S constructs segmentation rules through iterative rule stacking and enhances boundary information using connected component analysis. The method was evaluated using a multi-source remote sensing dataset covering the Hainan Dongzhai Port Mangrove Nature Reserve in China. The experimental results demonstrate that EIAGA-S achieves a superior overall mIoU (mean intersection over union) of 0.92 and an F1 score of 0.923, outperforming traditional models such as K-means and SVM (Support Vector Machine). A detailed boundary analysis confirms EIAGA-S’s ability to extract fine-grained mangrove patches. The segmentation includes five categories: mangrove canopy, other terrestrial vegetation, buildings and streets, bare land, and water bodies. The proposed EIAGA-S model offers a precise and data-efficient solution for mangrove semantic mapping while eliminating the dependency on extensive field sampling and labeled data. Additionally, the MEVI index facilitates large-scale mangrove monitoring. In future work, EIAGA-S can be integrated with long-term remote sensing data to analyze mangrove forest dynamics under climate change conditions. This innovative approach has potential applications in rapid forest change detection, environmental protection, and beyond.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3