Abstract
The Sn–Bi solder paste is commonly used in electronic assembly and packaging, but its brittleness causes poor reliability in shock environments. In this study, the mechanical reliability of Sn–Bi solder paste and Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was investigated with the board level drop test. The crack characterizations of solder joints were evaluated using a stereomicroscope after the dye and pull test. The microstructure characterization and failure types of solder joints were analyzed by a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS) was employed to investigate the initial phase identification and elemental analysis. Compared with Sn–Bi solder paste, the results show that the TSEP Sn–Bi solder pastes reduced the proportion of the complete failure and partial failure of the solder joints during the drop test. The microstructure observation of the crack path showed that the Sn–Bi/TSEP Sn–Bi solder joints were reinforced through the cured epoxy resin. The number of drops of the Sn–Bi/TSEP Sn–Bi-x (x = 3, 5, 7) solder joints had 1.55, 2.57, and over 3.00 times that of Sn–Bi/Sn–Bi solder joints after the board level drop test.
Funder
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献