Development of a Computational Fluid Dynamics (CFD) Numerical Approach of Thermoelectric Module for Power Generation

Author:

Qasim Mohammed A.ORCID,Velkin Vladimir I.ORCID,Shcheklein Sergey E.ORCID

Abstract

The recent innovations in thermoelectric generating materials have led to exceptional technologies that generate power from excess and lost heat. These technologies have proven to be of significant environmental and economic importance, especially with global warming issues and escalating fuel prices. This study developed a computational fluid dynamics (CFD) model for a thermoelectric generator (TEG) consisting of five TEG modules embedded between two aluminum blocks. The upper block collects solar energy and heats the hot side of the modules. The lower block has an internal M-shaped water channel to cool the cold side of the modules. The model predictions were compared with the authors’ previously published experimental results to assess its validity and reliability. A parametric study was conducted to investigate the effects of various solar collector block thicknesses and different water flow velocities on the TEG-generated voltage and efficiency. The results show excellent agreement between the model predictions and the experimental data. Moreover, the parametric study revealed a slight inverse relationship between the thickness of the solar-collecting mass, the efficiency of the system, and an increase in the heat flux. However, the relationship was proportional to the velocity of water flow.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3