Numerical and Experimental Analysis of a Prototypical Thermoelectric Generator Dedicated to Wood-Fired Heating Stove

Author:

Sornek KrzysztofORCID,Papis-Frączek KarolinaORCID

Abstract

The typical operating range of domestic heating devices includes only heat generation. However, the availability of combined heat and power generation in microscale devices is currently becoming a more and more interesting option. This paper shows the experimental and numerical analysis of the possibility of developing a micro-cogeneration system equipped with a wood-fired heating stove and a prototype of the thermoelectric generator equipped with low-price thermoelectric modules. In the first step, mathematical modeling made it possible to analyze different configurations of the hot side of the thermoelectric generator (computational fluid dynamics was used). Next, experiments have been conducted on the prototypical test rig. The maximum power obtained during the discussed combustion process was 15.9 We when the flue gas temperature was approximately 623 K. Assuming a case, when such value of generated power occurred during the whole main phase, the energy generated would be at a level of approximately 33.1 Whe, while the heat transferred to the water would be approximately 1 078.0 Whth. In addition to the technical aspects, the economic premises of the proposed solution were analyzed. As was shown, an installation of TEG to the existing stove is economically not viable: the Simply Payback Time will be approximately 28.9–66.1 years depending on the analyzed scenario. On the other hand, the SPBT would be significantly shorter, when the installation of the stove with an integrated thermoelectric generator was considered (approximately 5.4 years). However, it should be noted that the introduction of the power generating system to a heat source can provide fully or partially network-independent operation of the hot water and heating systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3